Ornstein-Zernike behavior for the Bernoulli bond percolation on Z in the supercritical regime

نویسندگان

  • G. A. Braga
  • A. Procacci
  • R. Sanchis
چکیده

We derive an Ornstein-Zernike asymptotic formula for the decay of the two point finite connectivity function τ f x,y(p) of the Bernoulli bond percolation process on Z , along the principal directions, for d ≥ 3, and for supercritical values of p sufficiently near to p = 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random path representation and sharp correlations asymptotics at high-temperatures

We recently introduced a robust approach to the derivation of sharp asymptotic formula for correlation functions of statistical mechanics models in the high-temperature regime. We describe its application to the nonperturbative proof of Ornstein-Zernike asymptotics of 2-point functions for self-avoiding walks, Bernoulli percolation and ferromagnetic Ising models. We then extend the proof, in th...

متن کامل

A pr 2 00 3 Random path representation and sharp correlations asymptotics at high - temperatures

We recently introduced a robust approach to the derivation of sharp asymptotic formula for correlation functions of statistical mechanics models in the high-temperature regime. We describe its application to the nonperturbative proof of Ornstein-Zernike asymptotics of 2-point functions for self-avoiding walks, Bernoulli percolation and ferromagnetic Ising models. We then extend the proof, in th...

متن کامل

On Traversable Length inside Semi-Cylinder in 2D supercritical Bond Percolation

We investigate a limit theorem on traversable length inside semi-cylinder in the 2-dimensional supercritical Bernoulli bond percolation, which gives an extension of Theorem 2 in [5]. This type of limit theorems was originally studied for the extinction time for the 1-dimensional contact process on a finite interval in [10]. Actually, our main result Theorem 2.1 is stated under a rather general ...

متن کامل

Theory of Connectivities for Subcritical Random Cluster Models

We develop a fluctuation theory of connectivities for subcritical random cluster models. The theory is based on a comprehensive nonperturbative probabilistic description of long connected clusters in terms of essentially onedimensional chains of irreducible objects. Statistics of local observables, for example, displacement, over such chains obey classical limit laws, and our construction leads...

متن کامل

Fluctuation Theory of Connectivities for Subcritical Random Cluster Models by Massimo Campanino,

We develop a fluctuation theory of connectivities for subcritical random cluster models. The theory is based on a comprehensive nonperturbative probabilistic description of long connected clusters in terms of essentially one-dimensional chains of irreducible objects. Statistics of local observables, for example, displacement, over such chains obey classical limit laws, and our construction lead...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002